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ABSTRACT 

It is proved that an arbitrary binary multiplicative system can be represented 
by a family of binary relations, using the so called generalized multiplieation 
of  relations. Transformations of such representations and existence of  a 
"universal" representation are studied. 

Introfluetion. One considers families R of binary relations (f.o.b.r.) over 
a given class N: 

r c N × N , R = { . . . , r , . . . } .  

The relations r are combined by the generalized multiplicaton (g.m.) of 

binary relations (b.r.) relative to the given family R. This g.m. yields the repre- 

sentation of an arbitrary binary (multiplicative) system (b.s.), associative or 

not-associative, partial or complete, single or many valued. Indeed, at small 

expense one can do away with all limitations and extend the validity of the earlier 

representation theorems [4b] to the most general b.s. M, which is more precisely 

a couple ([ M I, Tu)' where I M I is an arbitrary class and Tu c [ M I x I MI × I MI 
an arbitrary ternary relation over [M I" 

F.o.b.r. with the g.m. can be expressed by a generalization of Brandt's well- 

known normal multiplication table for groups. Some instances of this generaliza- 

tion have been met in [7]. It is also familiar from the mukiplication of ordinary 

fractions representing positive rational numbers as binary relations over the 

natural numbers. 

Although this approach is very general, it stands the test of useful applications 

to more specific conventional b.s. and, in particular, to groups. 

§1 introduces notations and concepts ;§2 establishes the basic representation 

theorem in full generality by constructing specific representations (slight extensions 

of earlier constructions [4b, 6]); §3 considers transformations of representations, 
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the existence of a universal representation, and some identifications in the funda- 

mental class N. 

Notations in this paper follow [7]. More specific applications are investigated 

in two other papers [2, 3]. (Cf. also [1, 5]). This series of papers is selfcontained. 

The results go back to earlier work of the authors (unpublished or stated without 

proof) mentioned in the bibliography for historical accuracy. 

1. Basic definitions and notat ions .  M = (I M 1,. ) = (I M l, TM) will denote 

an arbitrary b.s., i.e., a non-empty class [ M I= {..., a, b, c, ..-, m, .-.} with a non- 

empty ternary relation TM: 

( a , b , c ) e T u ~ c e a b  in M. 

Often we write M instead of[ M [ and T instead of TM. 

Binary relations associated with the ternary relation T: 

(a, b, c) ~ T ¢~ b/c ~ T l (a )  ¢~ a/c ~ T2(b) ¢~ a/b ~ T 3(c). 

Note: ab = Tl(a)(b) = T2(b)(a). 

Projections: piT = U,,~ M 
bility relation C = CM of M. 

n ,T  = M '  = {m l T i ( m  ) ~ ~}; M 1 =/C,  M 2 = CI ,  M 3 = 

(All projections are, of  course, non-empty.) 

Ti(m) (i = 1, 2, 3); P3T is also called the composa- 

U ab. 
a,b 6 M  

~,J~ffi 1 Mt =/~M is the multiplicative part of M, M - gM = M ° its unessential 
part. 

The concepts of isomorphism, isomorphic systems, and faithful (i.e. isomorphic) 

representation are defined as usual; those of homomorphism and homomorphic 

image will not be considered here, except for special situations and, possibly, 

with some modification. 

Given a b.s. M and a family F = {..., Kin,... ; Ko} of disjoint non-empty classes 

Km indexed by M and one further, possibly empty, class Ko indexed by, say 0, 

0 ~ M, one inflates the b.s. M to the b.s. M~ by the following trivial construction: 

. . . .  c)U Ko x K b x Kc, i.e., IM I = - F  {. . . , f ,g ,h,  .} and TM~ C°,b, r~ 

(f,  g, h )e  Tuv .~  3(a, b, c)~ TM If~Ka, g~gb,  h~ge .  
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F is a partition of [Mr I; the corresponding equivalence relation, also noted F, 

is a congruence and has the property 

f F g  =~ T~, , ( f )  = T~t,,(g) (i = 1, 2, 3). 

One recuperates M from M r by deflation (contraction, identifications) modF:  

M r ] t  - {Ko} ~ M. 

This is an instance of modified homomorphism M r ~ M; the modification is 

in the "mapping"  of Ko onto the empty set. 

More generally, an equivalence relation D on M with the property 

aDb ~ r ~ ( a ) =  r~,(b) (i = 1, 2, 3) 

and a, possibly empty, subclass D o of equivalence classes rood D in M ° induce 

a deflation of M to M , ,oo= M[D - D o (= (M - u D°)[D). 

The coarsest deflation equivalence of M, denoted E = Eu is, obviously, defined 

by 

aEMb*  = r (b) (i = 1, 2, 3). 

M ° is the, possibly empty, equivalence class rood Eu characterized by T~(m) = 

(i = 1, 2, 3). 

2ff = M/E - {M °} = { ..., d, b, ~,... } is a b.s. with 

(d ,b ,d )e  T u e ~ ( a , b , c ) e  T M ] a e ~ , b e [ ~ , c e g .  

is called the skeleton or the essential part of the b . s .M.  If M ° = ~ and all 

other equivalence classes rood E M are singletons, then there is an obvious identifi- 

cation of M with 3~ r ~ M. This is, in particular, the case for 3~r, i.e., 3~t = M. 

For arbitrary M pick one element m' from each equivalence class rood E M of 

#M as its representative and denote the class of representatives M'.  Then M'  = M 

is a representative binary subsystem of M with M'  -~ M and obvious identifica- 

tion. This justifies calling l~r the "essential part"  of M. The remaining elements 

of each equivalence class rood EM, if any, may be considered identical copies of m' 

distinguished from m' and among themselves by special labels (see p. 25). One 

expresses the same by saying that elements of one and the same equivalence 

class rood E M cannot be separated by multiplicative properties, i.e, properties 

of TM, but elements in distinct equivalence classes can. 

Let R = {..., r,, r~, r~,...} be a f.o.b.r, over a class N = Ng (R, all r, and of 
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course N non-empty). One defines the g.m. o f  relations relative to the f a m i l y  

R by 
r c ~ r  a • rb¢~rc D rar b ~ ~ ,  

where rat b denotes the usual composition of relations. Thus, in particular, 

r, " r b = J~5 .~  {r~rb = ~ or there exsists no r, ~ R ] r, D ror b # ~ }  

Every f.o.b.r. R becomes with this g.m. a uniquely defined b.s. denoted by the 

same R and referred to as a b.s. of relations (b.s.o.r.). 

As a matter of fact all f.o.b.r, or, what is now the same, b.s.o.r, appearing in 

this paper will satisfy 

ra" rb = ~ ~,ror~ = ~ .  

It follows that rat b # ~ =~ 9r, ~ R I r~r b ~ re. 

N o r m a l  multiplication tables (n.m.t.) 

A b.s.o.r, can be expressed by the following generalizationl[4a] of Brandt's n.m.t 

c ~ b  

Entrance I 

column y 

Entrance row x 

Diagonal 

The entrance row and column consist of the elements of N, the diagonal  of 

the points (x; x), x e N. If x / y  ~ra the point (x; y) is marked a. The construction 

of the table ensures that c ~ ab ¢~ rc D rarb. 

A row and column intersecting on the diagonal are called corresponding. 

Comparison o f  f ami l i e s  o f  classes: 

Let F = {'",Fro,'"}, G = {-.-,Gin,"-} be two families of classes indexed by 
the same class M = {...,m,...}. F is smaller  than G if Fro =Gm for all m. 

2. The basic representation theorem. 

A. THEOREM I. 

Every b.s. can be represented faithfully by a b.s.o.r. 
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Proof by construction of a particular representation Ro = {... ,  rm, ""}. 

The construction of this representation is motivated by the following four 

roles an element m e M can play in M: 

(1) m may appear as a first (left) factor, i.e., as the first component of a triple 

of Tu: m e M 1, i.e., C(m) ~ ~ .  
(2) m may appear as a second (right) factor, i.e., as the second component of a 

triple of  Tu: m E M  2, i.e., C-l(m) :~ ~ .  

(3) m may appear as an element in a product, i.e., as the third component of a 

triple of Tu: m ~ M a, i.e., T a(m) ~ ~ .  

(4) In any case m must appear as an element of the class IMI, ie., m lM I 
Let N Ro = No be the union of three distinct copies of tMI  x I MI  and two 

distinct copies of I M I: 

N = {Xm,,.~} U {Ym,,,,2} U {zm,,,,, } ~J {urn} U {Vm} (Vm, m,,  m2 ~ M).  

For every m e M put 

(2) U r(m 3) U _(4)  r m ----- r 2  ) U r m r m , 
where 

rim ' ) =  {Xmb/Ymb}b~C(m ) 

r~ ~= {Y,, . ,Iz, , , , ,} . ,  ~ c -  ,<,.~ 

r(m 3) = {XablZab}a/b,Ta(m ) 

= 

Thus, to each role (v) (v = 1, 2, 3, 4) of the element m e M there corresponds 

a non-empty relation r~ v). The correspondence 

4 

m --* rm = U r~V) is 1-1, since 
V = I  

ml ~ m 2  ==~ r (4) _(4)  ml ~ ~ rml ~ rm2 ? m 2  • 

Further, from inspection of  the construction, for all a, b, e M:  

.0).(2) = 5 j~ c~ab 
rorb = -a -b , ({xa~/Zob}C~ab ~- 

and 

c~abc~,Xab/ZabEr(c. 3), i.e., ~ r a r b ~ r ~ 3 ) c r ~ .  
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Therefore, 

c e a b . ~  rc ~ r~ " r b, 

and, in particular, ab -- ~ , = . r o .  rb = ~ .  

Thus, the b.s. of relations Ro is a faithful representation of M. 

Note: According to what was said before, in Ro 

rorb = ~ r a "  rb = f~. 

The pair um/vm will be called the label of m. 

Some economy in the size of the representing relations can always be obtained 

by discarding the unnecessary labels in accordance with an earlier remark about 

the necessary labels as follows: 

b ~ ~a = b or 
a DM 

( T~(a) = T~(b) = T2(a) = T2(b) = ~ ,  Ta(a) = T3(b). 

Notice that DM c EM and that M ° is an equivalence class of DM. Choose an 

arbitrary element m from every equivalence class of D u except from M °, and 

delete r(~ 4) from rm, thus distinguishing this element from others in its class by the 

absence of r(,, 4). The family of relations obtained in this way from Ro will be 

denoted by R~. RI is still a faithful representation of M. 

Note that Rt depends on the choice of particular elements (representatives) 

from the classes ~ M ° of DM. One can pass from one such choice to another by a 

product of disjoint transpositions of the elements of M. Since the permuted 

elements play exactly the same multiplicative role in M, all choices are equivalent. 

Therefore, we can assume, without loss of generality, for various f.o.b.r. 

representing the same M a fixed choice of representatives. 

If every equivalence class rood DM consists of a singleton and M ° = ~ ,  then 
(4) RI is obtained from Ro by deleting all rm • 

The representation R~ is smaller than R0. Besides having the properties of Ro 

1) rorb # ~ :~ ]rc D rorb, 2) rorb n rc ~ ~ ~ rorb c rc, 

R~ is also 3) min ima l  (relative to the comparison of families of classes defined 

on p. 24) among the faithful representations of M. 

Definition: A b.s.o.r, satisfying properties 1),2),3) will be called reduced. 

EXAMPLES 

1) Let M be given by the multiplication table 
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a b c 

a 

b 
c a , b  

uolv°}, Ro = {,-o,r~,rc}, r° = { ~ / z o o ,  r~ = { ~ / ~ ,  u~/,,~}, 

rc = {xc=ly~c, y~lz=~, u=Iv~} 

The equivalence classes rood D~  are {a, b} and {~}. An R,  = {r'°, l,,,r'=} is, 

e.g.: ,"o = {~c=Iz,,}, rj = ,'~, ,'; = { ~  IY=o, Yc= I ~ } .  

2) a b c 

a, b a 

b 
¢ 

a,b ,c  b 
a c 

R 1 = {ra, rb, re}, 

ro = {X°b/Yob, Y~o/Zo,, Yc, Izc°, X,~ Iz°b, X~o IZb,, Xc°/Z~°} 

ro = {xb°/Ybo, Xbc/Yb~, Y°b/Zab, X°b/Zob, Xb°/Zo°, Xbc/Zb~} 

r~ = {X~o/y¢o, xc c [y~, Yb¢/Zbo Y~c [Zc¢, Xbo [Z~, X¢c/Z~} 

B. Another representation of M. 

Let N be the union of three distinct copies of [M[:  

N = {x.} U {y.} U {Zm} (m ~ M) 

Consider the family of relations RII = { "", rm, "'" } where: 

(1) rm = {x, . /y, . }  U {y,/zm}, ~c"t . , )  U { x , / z j } , l j .  r ' ( . )  

Rzz is isomorphic to M. Indeed, m 1 ~ m2 =~ rm, ~ r,,2. Furthermore 

e e a b c ~ a ~ C - l ( b )  and Xo/Zb~r~, 

hence 

c ~ ab .o ( r , r ,  = {xoly°} {yo IZb} = {X°/Zb} C r~) ¢~ r~ ~ r°" rb. 

Similarly to the reduction of R0 to Rt one can reduce Rtt  by suppressing 

unnecessary labels of the form xm [Ym. Indeed, after choosing as before a represen- 

tative m' from every equivalence class of D M, except from M °, x . , / Y . ,  can be 

deleted from the corresponding relation r. , ,  provided that C(m') = IZ (otherwise 

x.,[ym, is needed to represent m' as a left factor). 
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The b.s. of relations RI[ t obtained in this way from RI[ is still a faithful repre- 

sentation of M and is reduced. 

Examples 

For example 

and the n.m.t.: 

2 RII = RsH = {ro, rb, r¢} 

r a 

r b = 

r e  

with 

{xo/y. ,  Yb [z., Yc/Za, x .  [zb, Xb/z., Xc/zo} 

{X~/Yb, Y~ [Zb, Xo ]zb, Xb ]Z., Xb [z~} 

{X~/y~, Yb/Z~, Yc ]Zc, Xb ]Za, X~ [Zc} 

Z 
C 

z b 

Z 
0 

Yc 

Yb 

Yo 

X 
C 

x b 

X 
0 

a,b 

, /  
X a 

b c c c 

a , b , c  

/ 

x b 

U 

C 

/ 

Xc Yo 

/ 
/ 

a a / 
/ 

/ 
/ 

/ 
/ 

/ 
f 

/,," 

/ 

Yb Yc Za Zb Zc 

/ 

3) M: a b c d 

a c ,d RIz = {ra, rb, re, rd}, where 

r.  = {x./yo, Ya/z.,  xo/za}, r b = {xb/Yb, Y./zb},  rc = {Xc/Yc, xa/zb}, 

rd = {xd led, x. lz~} 
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and R x t l  = R~. 
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The equivalence classes mod D u are {a}, {b}, {c, d}. 

An RHx is, e.g., 

, , { } ' { } r, = ro, r b = yo/z  b , r c = x ° / z  b , r~ = r d. 

REMARK. Instead of (1) one can put 

r" = {x .  ly,}, ccm  u { y .  l z . }  v {x, lzj},/ o 

and obtain a representation R~z "dua l "  to R H. 

3. Transforms of representations. Let N and N ~ be classes, R = { ..., r:, ...} 

an indexed family of non-empty relations over N and ~ ~ N x NL 

R~= {..., r~,, ... }, where r~ = ~- i r ,  ~, 

will be called the t rans form of R by ~. 

In particular, if  ~ is a mapping the corresponding transform will be called a 

mapp ing  transform. 

R ~ will be a family of non-empty relations if  and only if  for every m 

( / ~ x  /~) n rm ~ f~. 

For any b.s. M ,  there ex is ts  a mapping • such that R i i  = R~ 

Proof by construction of ~. 

N = {x,b} U {Yob} U {z.b } U {uo} U {vo} (a, b e M) 

N' = {x,} U {y,} U {z,} (a e M) 

= {xob/x,) U {Y,b/Y,} U w {u. lx , }  u { v ,h , }  (a, b e M )  

For any rm e Ro one computes that 

X r , ~  = rm {XmIY,} U{Y,/Zm},~C-,(m) U { X , / Z j } , U , r 3 ( , )  rm~R,I 

Hence RIZ = R~. Similarly, RzH = Rt  ~, because the choice of the same represen- 

tatives from the equivalence classes of D u ensures that 

~-~rm~ = r"  for every r m ~ R1 and the corresponding r~ ~ RHp 

R E M A R K .  RsI  = Ro, where 

~' = {Xob IX:} U {Yob/Yb} U {Z,b/Zb} U {Uo lYo} U {v, lz,} (a, b ~ M). 

Compound  t rans form 
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Let A - {~} be a class of relations u c N × NL The (compound) transform of 

R by A is R a {. a = .., r~, ...}, where 

'4 [TJj ~ [rJA 0t-irma" r m ~ r m 

The following theorem shows that R~ is in a certain sense a universal represen- 

tation. 

TrrEOR~ 2. For any representation o f  M by a reduced b.s.o.r. S = {..., Sin, ""} 

there exist an Rl  representing M and a family A = {ct} such that S = R~. 

Proof by construction of a particular R~ and a particular family A. The fact 
that S is reduced implies some choice of unlabeled elements of M; in accordance 

to our convention R~ belongs to the same choice. 

Assume tr/~ ~ Sm¢ S. o'/~ must represent m in at least one of its four possible 

roles in M:  

1) (m, b, c) e T& 3~ ~ N s t ~ /~ ~ Sb, ~/~ ~ So; in this case put ct = { Xmb /iT, Ymb /'¢ } ; 

2) (a, m, c) E T& 3~ ~ Ns[ ~ fi7 ~ sa, ~/z e s c; in this case put u = {Yore/~, zm/z}  ; 

3) (a, b, m) ~ T& 3 ~l ~ Ns [ tr/t/~ s~, ~//~ e Sb ; in this case put ct = {x~/tr, Zob/X} ; 

4) m is a labeled element and tr/~ is the label; in this case put ~t = {Urn/tr, Vm/~} 

In all four cases one computes {tr[~} = r~. A is the collection of  all these u, and, 
therefore, for all m, 

The b.r. p between representations of M with a fixed labeling 

RlpR2"*~ 3A I R2 = R~ (A = {~)), 

is obviously a quasi-ordering (reflexive and transitive). Thus, the universality o~ 

Rf means that Rz is "greatest" in the class of reduced representations of  M with 

that labeling. The possible (quasi-) order relations in the class of representations 

of a b.s. M deserve further investigation. 

Some simple mapping transforms: identifications. 

Let M be represented by RzH and consider the following "identifications": 
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1) For  C(a)= C(b): Put yo = Yb, i.e., N~ = N -  {y~}, ~ is the identity on 

N - { y  ~} and ybu = yo.  

2) For e~C(e)  and (Vm~C(e) ) (em = m): Put x e =  Ye, i.e., N u = N - { Y e } ,  

is the identity on N - {Ye} and ye~ = xe. 

3) For eeC(e) ,  (Vm1~C-1 (e ) ) (m le  = ml), (Vm26C(e) ) (em 2 = m2) and 

C-X(e) x C(e) c C: Put x e = y~ = z e. 

In all cases R~zz remains a faithful representation of  M. In example 2 (p. 28) 
conditions 1) and 3) hold simultaneously; the identifications y ~ - - x c - - y c - - z ¢  
yield the n.m.t.: 

z b 

Z a 

Yb 

Ya 

x b 

X G 

a,b b 

a,b, 
C 

b 

° / 
/ 

/ 
×0 

Q 

f 
/ 

Xb Ya Yb za Zb 

/ 

COROLLARY 1. For a monad (groupoid) all y~, can be identified (by condition 

1)). Therefore, for a faithful representation of  a monad M by a f.o.b.r, card N 

< 2 card M + 1 suffices; and if M has an identity, 2 card M - 1. 

4) A further identification for a monad M with an identity e and elements a, b 

such that ab = ba = e and (Vml,  m 2 ~ M) ((mla)(bm2) = mira2): Put z a = x~. 

COROLLARY 2. For a group G card N = card G suffices. 

Proof. Put in 4) a = g, b = g-1 for all g ~ G ;  by associativity (g~g)(g-lgj) 

=gig /  for all g~,gy~G; identifying zg=xg_  1, one obtains N={ . . . , xg , . . . } .  

This gives the well known n.m.t, for groups (see, e.g., [4a, 8 p.4]). Further re- 

ductions of card N for groups are treated elsewhere [2]. 
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